This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

Novel DNA Nanoparticles and Networks

Frank Seela^{ab}; Anup M. Jawalekar^{ab}; Venkata R. Sirivolu^{ab}; Helmut Rosemeyer^{ab}; Yang He^{ab}; Peter Leonard^{ab}

^a Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Osnabrück, Germany ^b Center for Nanotechnology (CeNTech), Münster, Germany

 $\label{eq:continuous} \textbf{To cite this Article} \ Seela, Frank \ , Jawalekar, \ Anup \ M. \ , Sirivolu, \ Venkata \ R. \ , Rosemeyer, \ Helmut \ , He, \ Yang \ and \ Leonard, \ Peter (2005) 'Novel DNA Nanoparticles \ and \ Networks', \ Nucleosides, \ Nucleotides \ and \ Nucleic \ Acids, \ 24:5,855-858$

To link to this Article: DOI: 10.1081/NCN-200059190 URL: http://dx.doi.org/10.1081/NCN-200059190

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Nucleosides, Nucleotides, and Nucleic Acids, 24 (5-7):855-858, (2005)

Copyright © Taylor & Francis, Inc. ISSN: 1525-7770 print/ 1532-2335 online

DOI: 10.1081/NCN-200059190

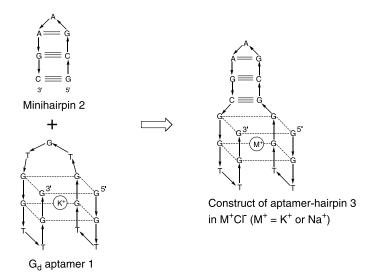
NOVEL DNA NANOPARTICLES AND NETWORKS

Frank Seela, Anup M. Jawalekar, Venkata R. Sirivolu, Helmut Rosemeyer, Yang He, and Peter Leonard • Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Osnabrück, Germany and Center for Nanotechnology (CeNTech), Münster, Germany

Doining the thrombin-binding aptamer 5'-d(GGTTGGTGGTGGTGG) and the minihairpin 5'd(GCGAAGC) leads to new DNA nanoparticles, which are different from rod-like helical doublestranded DNA. Covalent interstrand cross-links in DNA duplexes generated by bifunctional alkadiyne chains were used to build-up the DNA networks.

Keywords DNA Nanoparticles, DNA Networks, Aptamers, Minihairpins

INTRODUCTION


The powerful molecular recognition property of the DNA molecule has appealing features in the bottom-up nanotechnology and can be used to direct the assembly of highly structured materials with specific nanoscale features. Singlestranded DNA of particular sequences can self-assemble into secondary structures such as cubes, octahedrons, [1] hairpins and aptamers. [2] This self-assembly and scaffolding may provide useful applications in nanoelectronics, biosensors, and gene delivery systems. In order to exploit the DNA for material science we have focused our attention on the engineering of DNA constructs containing different structural motifs as well as DNA networks.

RESULTS AND DISCUSSION

Aptamer-Minihairpin Conjugates

The aptamer 5'-d(GGTTGGTGTGGTTGG) (1)^[2] forms a chair-like structure in the presence of K^+ or Na^+ ions and shows a $T_{\rm m}$ value of $48^{\circ} C$. It binds to the

We gratefully acknowledge the financial support by the Roche Diagnostics GmbH, Germany. Address correspondence to Frank Seela, Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, Osnabrück 49069, Germany.

FIGURE 1

serine protease thrombin and results in the inhibition of thrombin-catalyzed fibrin clot formation. The short DNA fragment 5'-d(GCGAAGC) (2) (Figure 1) occurs frequently in biologically important regions and creates an extraordinarily stable minihairpin ($T_{\rm m} = 70\,^{\circ}{\rm C}$). We have combined these two structural units 1 and 2, forming d(GGTTGGGCGAAGCGGTTGG) (3) (Figure 1). This shows two phase transitions with $T_{\rm m}$ values of 43°C and 70°C (20 mM Li₃PO₄, 50 mM KCl (pH 7), revealing the separate melting of the aptamer (43°C) and of the minihairpin elements (70°C).

As like the thrombin-binding aptamer 1, the newly formed construct 3 shows the same ion dependence in such a way that neither Li^+ nor Cs^+ ions form the structure while in the presence of Na^+ the molecule exhibits $T_{\rm m}$ values of $40^{\circ}\mathrm{C}$ and $70^{\circ}\mathrm{C}$. Replacement of the external 2-base loops [d(TT)] of 3 by the minihairpin 2

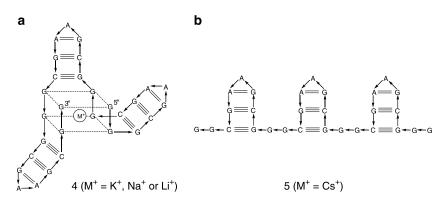
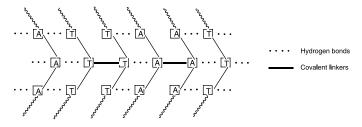


FIGURE 2

FIGURE 3

SCHEME 1


results into the new propeller-shaped nanostructure **4** (Figure 2). It shows different behavior from that of **3** as not only in the presence of K^+ and Na^+ ions, but also in Li^+ solutions it exhibits two melting temperatures, from which the higher one–referring to the minihairpins (72°C)—is almost independent from the ion type. The lower one is ion dependent showing a $T_{\rm m}$ value in the presence of Na^+ (60°C). In a Cs^+ -containing solution only the transition of the minihairpin is observed (72°C), implying the absence of the tetrade and the presence of a linear chain with three minihairpin loops (**5**, Figure 2b).

From these findings it is obvious that this DNA construct shows rather different properties as the rod-like helical double-stranded DNA. This allows the formation

TABLE 1 $T_{\rm m}$ Values and Thermodynamic Data of Oligonucleotides Containing Regular and the Base-Modified Nucleoside T*-T*

Duplex	T _m (°C)	ΔH° (kcal/mol)	ΔS° (cal/K mol)	ΔG°_{310} (kcal/mol)
5'-d(ITTTTTTTTTTT) 3'-d(AAAAAAAAAAA) 3'-d(AAAAAAAAAAA) 5'-d(ITTTTT*TTTTTT)	44	-84	-238	-9.8
 5'-d(TTTTTT*TTTTTT) 3'-d(AAAAAAAAAAA)	58	-133	-377	-16.0

Buffer: 1 M NaCl, 100 mM MgCl $_2,\,60$ mM Na-cacodylate, pH 7.

Bended DNA Network

FIGURE 4

of "globular" DNA nanoparticles which show controllable structural properties on the same molecule.

DNA Networks

Interstrand cross-links in DNA duplexes generated by bifunctional alkylating agents are of considerable interest in forming DNA which inhibit DNA transcription and replication. To explore this we have focused our interest in constructing polymeric networks from double stranded DNA. They are cross-linked by alkadiyne chains of various lengths and rigidity (Figure 3). This approach can be used to generate super supramolecular assemblies of highly ordered materials.

For this we have synthesized base-modified cross-linked building blocks 1 and 2 with various alkadiyne chains (Scheme 1). The oligonucleotides incorporating these building blocks were obtained by solid-phase synthesis. Already, the cross-linked duplex DNA shows significantly higher thermal stability than that of the individual DNA duplexes of identical length and composition (Table 1).

These structures might be deposited on surfaces thereby forming regular pattern of DNA networks. They can act as protein binding sites or might be used to generate particular patterns on a polymeric surface. According to the persistence length of DNA (50 nm) the molecules described above form stiff rod-like structures. Future work will use bended DNA-fragments which are formed by particular sequence motifs. Thus, it will be possible to create bended DNA networks (Figure 4).

REFERENCES

- 1. Chen, J.H.; Seeman, N.C. Nature 1991, 350(6319), 631-633.
- 2. Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Nature 1992, 355(6360), 564-566.
- Rosemeyer, H.; Mokrosch, V.; Jawalekar, A.; Becker, E.-M.; Seela, F. Helv. Chim. Acta 2004, 87, 536–553 and literature cited therein.
- 4. Noronha, A.M.; Wilds, C.J.; Miller, P.S. Biochemistry 2002, 41(27), 8605-8612.